

Analysing the World's News: Challenges and Learnings from Industry

Miguel Martinez, Co-founder / Chief Data Scientist, Signal AI @miguelmalvarez <u>www.signal-ai.com</u> / <u>www.research.signal-ai.com</u>

Before Starting... two questions for you

• Raise your hand if you are a CLEF lab organiser with industry co-organisation

Before Starting... two questions for you

• Raise your hand if you are a CLEF lab organiser with industry co-organisation

Raise your hand if you, as a researcher, have involved industry partners in 2019

Today's agenda

- What is Signal AI?
- Connection to CLEF
- Signal Al's approach and lessons learnt
- Academic vs Commercial Research

Please ask questions on the fly!

- Signal AI is a 6 years old B2B company
- 150+ people in 3 continents (EMEA, NA, APAC)
- 100s of clients
- Academic and Practitioner Community involvement
- VC funded: \$30M+ raised
- Fun fact: 2/3 founders were "found" on meetup.com

Signal Vision Transform decision-making through augmented intelligence

Use Cases

 \odot

Opportunity Leading Market Shift Lead Generation New markets **Reputation** Customer Feedback Damaged Products <u>PR/Comms</u>

Risk Regulation Competitors Initiatives

CLEF CONNECTION

Similar Problems

Complex information access end-to-end tasks

Over multiple data Types

Changing over time

Some driven by industry needs (e.g. RepLab)

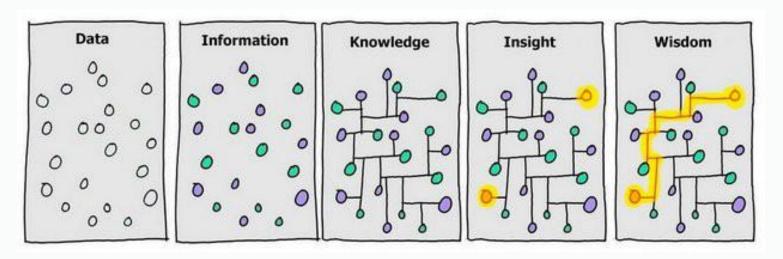
Similar Perspective

Realistic evaluation frameworks

Multi-field expertise

Open for collaborations

Adapting as new problems appear



Source: https://random-blather.com/2014/04/28/information-isnt-power/

Complexity Value Less data for the user

Discover

Suggest future patterns

Draw Insight Trends, Snapshots, Comparison

Monitor

Accurate, search

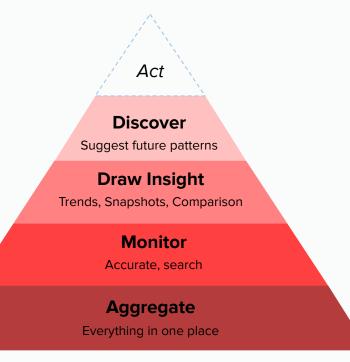
Aggregate

Everything in one place

AGGREGATE

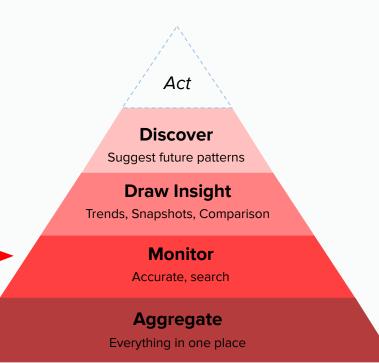
Complete coverage of potentially important sources

- Multiple Data Types (News, Blogs, Regulation)
- Real Time
- Multiple Languages
- Future: Images, Patents, Twitter, and beyond



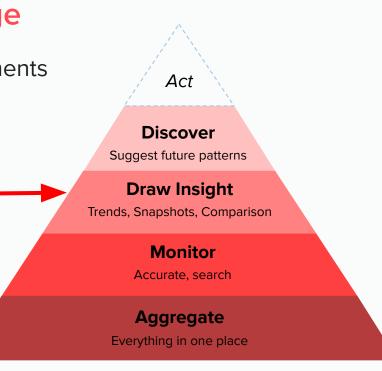
Retrieving only, and all, relevant documents for an information need

- Information Filtering (entities, topics, sources)
- Based on complex queries
- Document-focused
- Future: Factual vs non-factual documents, Reputation polarity



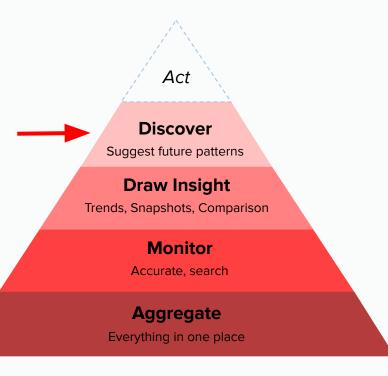
Distilling documents into knowledge

- Quick exploration of high-volume of documents
- Focused on sets of documents
- Trends and anomalies
- Time changes
- Data visualisation (visualisations are key)



Unknown unknowns

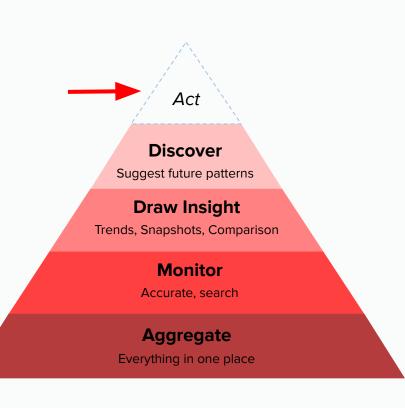
- Horizon Scanning
- Recommendations outside echo chambers
- Factors you should care about but aren't aware of yet



Suggest actions and predict

consequences

- Long-term ambition
- Predictive modelling and forecasting
- Digital "Consiglieri"



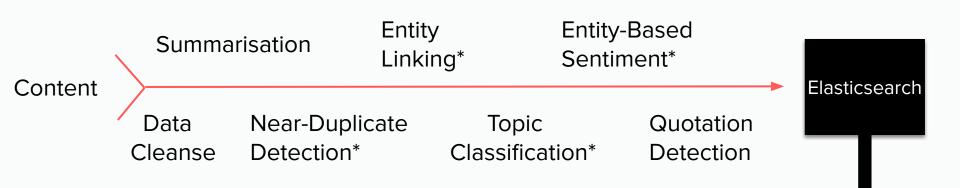
- Process 3M+ documents daily
- Easy to add new components and amend
- Multiple types of textual data
- Multiple languages
- Reprocessing data with new models

HIGH-LEVEL

DATA AGGREGATION

- Multiple data types are crucial for many use-cases
- The line between different data types is blurring
 - Influencers using blogs or social media, like Twitter, are more impactful than some newspapers

ML PIPELINE



Product

Isn't it a solved problem?

- The problem is the sheer volume and velocity of data
- Hashing and dimensionality reduction models (LSH)
- Balancing <u>what is a duplicate</u> for different users is the main challenge
- Around half of our daily articles are duplicates

D Jerromy Codays, left, and David Carrierum at PMCp. The Labour insider Init: the PMA "Will he just get real? The MHC is in a problem." Photograph. BBC

ENTITY LINKING

Disambiguating Mentions

- Name Entity Recognition (NER) is not meaningful for tracking relevancy
- Disambiguation to a known
 Knowledge Base is needed

<u>Michael Jordan</u> is great

Michael Jordan is a great researcher

How good is good enough?

Broad Coverage using Wikipedia:

- 100,000s of entities
- Close to 0.90 avg. F1 in Wikilinks EL dataset
- Much quicker than other (academic) implementations

GREAT NEWS... right?

How good is good enough?

- Broad Coverage using Wikipedia:
 - 100,000s of entities
 - Close to 0.90 F1 in Wikilinks EL dataset
 - Much quicker than other (academic) implementations
- **0.90 F1 is not useful and its variance is a problem**. Quality needs to be close to R:99/P90 (they of course ask for 100/100)
 - Supervised learning for client related entities (10K)
 - \circ 0.98 avg F1 (with min. of 0.95) in internal datasets
 - Active learning, in-house labelling tool, quality estimation...

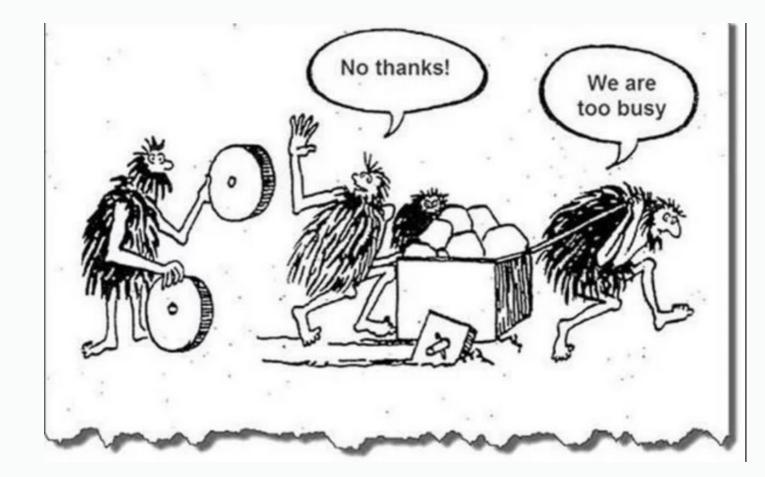
With respect to what/whom?

- Document based sentiment analysis has limited value
- We use Entity-based sentiment analysis
- What we will move towards is Reputation Polarity / Stance Detection
 - "Lidl has fired 15,000 people and is closing in Germany"
 - <u>Neutral</u> sentence
 - Very <u>Negative</u> Reputational Polarity
 - <u>Positive</u> for Lidl competitors

CHALLENGES AND LEARNINGS

- Product Alignment and Value
- Data
- Evaluation
- Research vs Development Balance
- Organisational Structure

PRODUCT ALIGNMENT



- Research should always bring value to the organisation
 - Always asking "why" and thinking about value
- Pareto rule and constant iteration
 - Strong baselines or simple models might be enough
 - Constant Prioritisation and Slicing with (many) competing lines of work
 - Different life-cycles from development and research
- Human + Algorithm collaboration is key
 - Talking to clients directly
 - Only build a ML system if needed. Rules are great for some problems

- In academia, focus on models
 - Given public datasets, how can I significantly improve quality?
 - Data is (usually) static and immutable
 - Leading to overfitting over years
 - Collections tend to be over-simplistic and/or "too clean"
- In industry, data is at the center
 - You can buy it, find it or create it
 - It changes over time (data and topic shift)
 - Bias in collecting labels
 - It is noisy (e.g., badly parsed articles)

- Evaluation is complicated, even more in industry
 - Users tend to ask for 100% accuracy
- What to measure?
 - Component vs User vs System based evaluation
 - What metric to use? F1? F0.5? P/R? ...
 - Some mistakes are worse than others
 - Quality just one aspect: model explainability, efficiency, consistency.
- Evaluations to be linked to user value (even as proxy)

• How to aggregate metrics

- The academic community tends to show averages
- Threshold quality more important than average in many cases
- All clients are equal but some are more equal than others

How to run evaluations

- Unbalance problems
- Biases in data collection
- Labelling and evaluation steps related and dependent
- Data and its distribution changes all the time:
- Post-deployment monitoring and evaluation

Source https://www.reddit.com/r/funny/comments/2a41i2/science_vs_engineering/

- Flexibility and Adaptability
 - Researchers and Developers working together in production-code
- Pipeline Operations
 - Replicability and Reproducibility
 - Debuggable
 - Local vs Cloud Behaviour
- Scalability and Efficiency
 - How would it scale with 10x the volume? How quick is it?

• Flexibility and Adaptability

 Researchers and Developers working together in <u>production-code</u>

• Pipeline Operations

- Replicability and Reproducibility
- Debuggable
- Local vs Cloud Behaviour
- Scalability and Efficiency
 - How would it scale with 10x volume? How quick is it?

What's your ML Test Score? A rubric for ML production systems

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley Google, Inc. {ebreck, cais, nielsene, msalib, dsculley}@google.com

Abstract

Using machine learning in real-world production systems is complicated by a host of issues not found in small toy examples or even large offline research experiments. Testing and monitoring are key considerations for assessing the production-readiness of an ML system. But how much testing and monitoring is enough? We present an ML Test Score rubric based on a set of actionable tests to help quantify these issues.

1 Introduction

Using machine learning in real-world software systems is complicated by a host of issues not found in small toy examples or even large offline experiments [1]. Based on years of prior experience using ML at Google, in systems such as ad click prediction [2] and the Sibyl ML platform [3], we have developed a set of best practices for using machine learning systems. We present these practices as a set of actionable tests, and offer a scoring system to measure how ready for production a given machine learning system is.

This rubric is intended to cover a range from a team just starting out with machine learning up through tests that even a well-established team may find difficult. We feel that presenting the entire list is useful to gauge a team's readiness to field a real-world ML system.

WHERE SHOULD YOU PUT YOUR RESEARCHERS?

- Research team (aka Research Lab)
- Integrated in product teams
- Embedded: "Rented" to teams

Daniel Tunkelang Follow

High-Class Consultant. Chief Search Evangelist at Twiggle. Apr 29, 2016

Where should you put your data scientists?

- Why collaborate with academia?
 - Influence focus of research
 - Hiring and retention
 - Company brand and reputation
 - Improve current/new services
 - Serendipity brainstorms

- MSc students
- Visiting researchers / interns
- Publications
- Grants
- Community involvement
- Industry Advisory Boards
- Invited speakers

ON THE SHOULDERS OF GIANTS

Dr. Daniel Gayo-Avello Assoc. Professor University of Oviedo

Dr. Thomas Roelleke Lecturer Queen Mary University of London

Dr. Udo Kruschwitz Professor University of Regensburg

TAKE-AWAY POINTS FOR ACADEMIA

- Involving industry in academia is a win-win and builds relationships!
- Quality is not everything
- More end-to-end evaluation focused on real problems to be solved
- Move away from static collections we optimise for decades

Questions?

- Involving industry in academia is a win-win and builds relationships!
- Quality is not everything

TAKE-AWAY POINTS FOR ACADEMIA

- More end-to-end evaluation focused on real problems to be solved
- Move away from static collections we optimise for decades